July 2001 Revised February 2002

NC7SZ74 TinyLogic™ UHS D-Type Flip-Flop with Preset and Clear

General Description

FAIRCHILD

SEMICONDUCTOR

The NC7SZ74 is a single D-type CMOS Flip-Flop with preset and clear from Fairchild's Ultra High Speed Series of TinyLogic[™] in the space saving US8 package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V–5.5V V_{CC} range. The inputs and output are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage. The output tolerates voltages above V_{CC} in the 3-STATE condition.

The signal level applied to the D input is transferred to the Q output during the positive going transition of the CLK pulse.

Features

- Space saving US8 surface mount package
- \blacksquare Ultra High Speed; t_{PD} 2.6 ns Typ into 50 pF at 5V V_{CC}
- High Output Drive; ± 24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range; 1.65V to 5.5V
- Power down high impedance inputs/output
- Overvoltage tolerant inputs facilitate 5V 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

Order Number	Package Number	Product Code Top Mark	Package Description	Supplied As
NC7SZ74K8X	MAB08A	Z74	8-Lead US8, JEDEC MO-187, Variation CA 3.1mm Wide	3k Units on Tape and Reel

TinyLogic™ is a trademark of Fairchild Semiconductor Corporation.

Pin Descriptions

Truth Table

PR

Н

L

L

Н

Н

н

H = HIGH Logic Level

L = LOW Logic Level ↑ = Rising Edge

CLR

L

Н

L

Н

Н

Н

Inputs

D

Х

Х

Х

L

Н

Х

СК

Х

Х

Х

ſ

T

 \downarrow

 \downarrow = Falling edge

Z = High Impedance Q_n = No change in data

Pin Names	Description
D	Data Input
СК	Clock Pulse Input
CLR	Direct Clear Input
Q, <u>Q</u>	Flip-Flop Output
PR	Direct Preset Input

Outputs

Q

Н

L

Н

Н

L

 $\overline{\mathsf{Q}}_{\mathsf{n}}$

X = Immaterial

Q

L

Н

Н

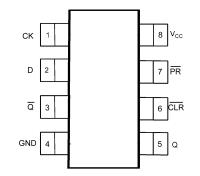
L

Н

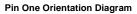
Qn

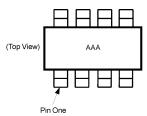
Function

Clear Preset


_

No Change


Logic Symbol



Connection Diagrams

(Top View)

AAA represents Product Code Top Mark - see ordering code **Note:** Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).

Absolute	Maximum	Ratings(Note 1)
----------	---------	-----------------

Recommended Operating

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
V _{IN} < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < 0V	–50 mA
DC Output (I _{OUT}) Source/Sink Current	\pm 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	\pm 50 mA
Storage Temperature Range (T _{STG})	–65°C to +150°C
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	180 mW

Conditions (Note 2)	
Power Supply	
Operating (V _{CC})	1.65V to 5.5V
Data Retention	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	
Active State	0V to V_{CC}
3-STATE	0V to 5.5V
Input Rise and Fall Time (t_r, t_f)	
$V_{CC}=1.8V,2.5V\pm0.2V$	0 to 20 ns/V
$V_{CC}=3.3V\pm0.3V$	0 to 10 ns/V
$V_{CC}=5.5V\pm0.5V$	0 to 5 ns/V
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Thermal Resistance (θ_{JA})	350° C/W
Note 1: Absolute Maximum Ratings: are those v safety of the device cannot be guaranteed. The de	evice should not be oper-

NC7SZ74

safety of the device cannot be guaranteed. The device should which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the Electrical Characteristics tables are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	v _{cc}	V_{CC} $T_A = +25^{\circ}C$		C	$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C}$ to $+85^{\circ}\textbf{C}$		Units	Conditions	
Symbol	Farameter	(V)	Min	Тур	Max	Min	Max	Units	Con	litions
VIH	HIGH Level Control	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		v		
	Input Voltage	2.3 to 5.5	0.75 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level Control	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	v		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	2.3	2.2	2.3		2.2				I _{OH} = -100 μ/
		3.0	2.9	3.0		2.9				$10H = -100 \mu$
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29		V	$V_{IN} = V_{IH}$	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.8		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.2		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Control	1.65			0.1		0.1			
	Output Voltage	2.3			0.1		0.1			I _{OL} = 100 μA
		3.0			0.1		0.1			$I_{OL} = 100 \mu A$
		4.5			0.1		0.1			
		1.65		0.08	0.24		0.24	V	$V_{IN} = V_{IH}$	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \leq V_{IN} \leq 5.5 V$	
I _{OFF}	Power Off Leakage Current	0.0			1.0		10	μΑ	V_{IN} or $V_{OUT} =$	5.5V
Icc	Quiescent Supply Current	1.65 to 5.5			1.0		10.0	μΑ	V _{IN} = 5.5V, GN	ND

4
N
S
~
C
Ž

AC Electrical Characteristics

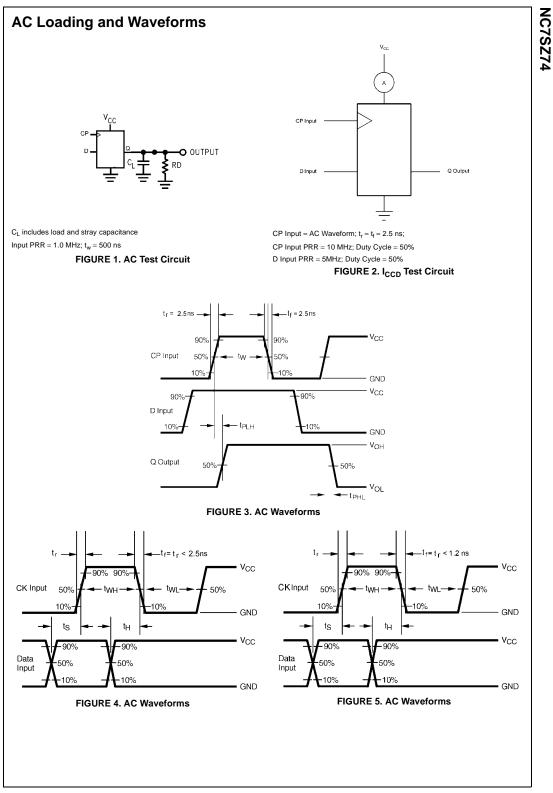
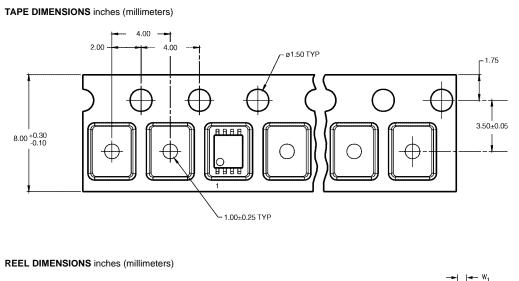

Symbol f _{MAX}	Parameter Maximum Clock Frequency	V _{CC} (V)	Min	Тур					Units	Conditions	
f _{MAX}		4.0 - 0.4-		iyp	Max	Min		Max	Units	Conditions	Figure Number
	Frequency	1.8 ± 0.15	75			75					
	riequency	2.5 ± 0.2	150			150	1			C _L = 15 pF	
		3.3 ± 0.3	200			200	1			$R_D = 1 M\Omega$	Figure
		5.0 ± 0.5	250			250	1		MHz	S ₁ = Open	1, 5
		3.3 ± 0.3	175			175				C _L = 50 pF	
		5.0 ± 0.5	200			200				$R_D = 500\Omega$, $S_1 = Open$	
t _{PLH}	Propagation Delay	1.8 ± 0.15	2.5	6.5	12.5	2.5		13.0			
t _{PHL}	CK to Q, Q	2.5 ± 0.2	1.5	3.8	7.5	1.5		8.0		C _L = 15 pF	
		3.3 ± 0.3	1.0	2.8	6.5	1.0		7.0	ns	$R_D = 1 M\Omega$	Figure
		5.0 ± 0.5	0.8	2.2	4.5	0.8		5.0		S ₁ = Open	1, 3
		3.3 ± 0.3	1.0	3.4	7.0	1.0		7.5		$C_L = 50 \text{ pF}$	
		5.0 ± 0.5	1.0	2.6	5.0	1.0		5.5		$R_D = 500 \Omega$, $S_1 = Open$	
t _{PLH}	Propagation Delay	1.8 ± 0.15	2.5	6.5	14.0	2.5		14.5			
t _{PHL}	CLR, PR, to Q, Q	2.5 ± 0.2	1.5	3.8	9.0	1.5		9.5		C _L = 15 pF	
THE .	, , , .	3.3±0.3	1.0	2.8	6.5	1.0		7.0		$R_{D} = 1 M\Omega$	Figure
		5.0 ± 0.5	0.8	2.2	5.0	0.8		5.5	ns	S ₁ = Open	1, 3
		3.3 ± 0.3	1.0	3.4	7.0	1.0		7.5		$C_L = 50 \text{ pF}$	
		5.0 ± 0.5	1.0	2.6	5.0	1.0		5.5		$R_D = 500 \Omega$, $S_1 = Open$	
ts	Setup Time,	1.8 ± 0.15	6.5			6.5				D ,	
.5	CK to D	2.5±0.2	3.5			3.5				C _L = 15 pF	
		3.3±0.3	2.0			2.0				$R_{\rm D} = 1 \rm M\Omega$	Figure
		5.0 ± 0.5	1.5			1.5			ns	S ₁ = Open	1, 4
		3.3 ± 0.3	2.0			2.0				$C_1 = 50 \text{ pF}$	
		5.0 ± 0.5	1.5			1.5				$R_D = 500 \Omega$, $S_1 = Open$	
t _H	Hold Time,	1.8 ± 0.15	0.5			0.5					
'n	CK to D	2.5±0.2	0.5			0.5				C _L = 15 pF	
		3.3 ± 0.3	0.5			0.5				$R_{\rm D} = 1 \text{M}\Omega$	Figure
		5.0 ± 0.5	0.5			0.5			ns	S ₁ = Open	Figure 1, 4
		3.3 ± 0.3	0.5			0.5				$C_L = 50 \text{ pF}$	
		5.0 ± 0.5	0.5			0.5				$R_D = 500 \Omega$, $S_1 = Open$	
t _W	Pulse Width,	1.8 ± 0.15	6.0			6.0				110 - 000 12, 01 - Open	───
•vv	CK, PR, CLR	2.5±0.2	4.0			4.0				C _L = 15 pF	
	OR, TR, OER	3.3 ± 0.3	3.0			3.0				$R_{\rm D} = 1 \text{M}\Omega$	-
		5.0 ± 0.5	2.0			2.0			ns	$S_1 = Open$	Figure 1, 5
		3.3 ± 0.3	3.0			3.0				CL = 50 pF	.,.
		5.0 ± 0.5	2.0			2.0				$R_D = 500 \Omega$, $S_1 = Open$	
+	Recover Time	0.0 ± 0.5	8.0			8.0				10 = 300 22, 31 = 00011	
t _{REC}	CLR, PR to CK	1.0 ± 0.13 2.5 ± 0.2	4.5			4.5				C _L = 15 pF	
	CER, FIX IO OK	2.3 ± 0.2 3.3 ± 0.3	3.0			3.0				$R_{\rm D} = 1 M\Omega$	-
		5.0 ± 0.5	3.0			3.0			ns	$S_1 = Open$	Figure 1, 4
		3.3 ± 0.3	3.0			3.0				$C_L = 50 \text{ pF}$.,.
		5.0 ± 0.5	3.0			3.0				$R_D = 500 \Omega$, $S_1 = Open$	
Car			5.0			3.0				110 - 300 32, 01 - Open	
-	acitance (Note	3) Param	otor			Tun	Max	Unit		Conditions	
	Input Capacit		erei			Тур 3	ivia X	pF			
C _{IN} C _{OUT}						3		pF pF		= 0V	
JOUT	Output Capac	ation Capacitar	oo (Note	4)		4		PF		= 0V = 3.3V	
C _{PD}											

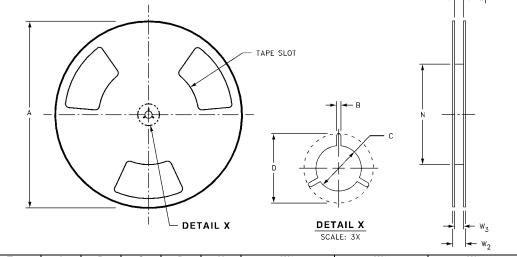
 Image: Note 3: $T_A = +25C$, f = 1MHz.
 Image: Note 3: $T_A = +25C$, f = 1MHz.
 Image: Note 3: $T_A = +25C$, f = 1000, $I_C = 5.000$

 Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no out

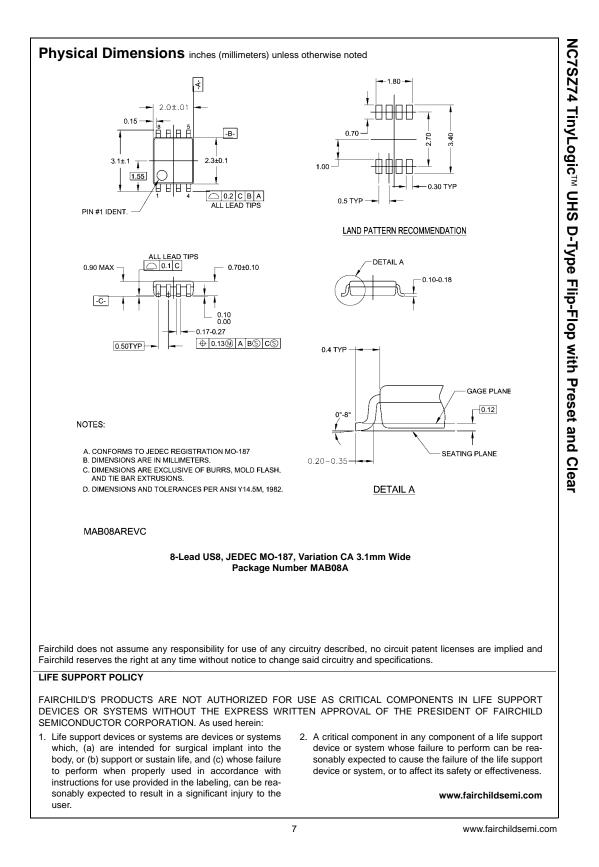
Note 4: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2) C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

www.fairchildsemi.com




www.fairchildsemi.com

Tape and Reel Specification


TAPE FORMAT				
Package	Таре	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
K8X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed

Tape Size	A	В	С	D	N	W1	W2	W3
0 mm	7.0	0.059	0.512	0.795	2.165	0.331 + 0.059/-0.000	0.567	W1 + 0.078/-0.039
8 mm	(177.8)	(1.50)	(13.00)	(20.20)	(55.00)	(8.40 + 1.50/-0.00)	(14.40)	(W1 + 2.00/-1.00)

www.fairchildsemi.com

